Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin
DOI:
https://doi.org/10.32678/bs.v8i2.8246Kata Kunci:
Box-Jenkins, forcasting, ROA, ROEAbstrak
Kepercayaan masyarakat terhadap bank dapat dipengaruhi oleh kinerja suatu bank yang dapat dilihat dari tingkat profitabilitasnya. Terjadinya penurunan kinerja suatu bank akan menyebabkan menurunnya tingkat profitabilitas suatu bank. Sehingga apabila terjadi penurunan tingkat profitabilitas akan menyebabkan penurunan kepercayaan masyarakat terhadap bank. Penelitian ini bertujuan untuk meramalkan data kinerja keuangan Bank Syariah Bukopin menggunakan metode ARIMA Box-Jenkins. Data yang digunakan untuk penelitian ini adalah data rasio triwulan profitabilitas ROA dan ROE tahun 2010-2020. Hasil penelitian ini menunjukkan bahwa model ARIMA (1,1,0) dapat digunakan untuk melakukan peramalan data ROA.
Unduhan
Referensi
Agustin, I. N. (2019). The approach of box-jenkins time series analysis for predicting stock price in LQ45 stock index. PROFIT: Jurnal Administrasi Bisnis, 13(1), 18—25. https://doi.org/10.21776/ub.profit.2019.013.01.2
Anderson, O. D. (1995). More effective time-series analysis and forecasting. Journal of Computational and Applied Mathematics, 64(1-2), 117—147. https://doi.org/10.1016/0377-0427(95)00011-9
Beaumont, C. (1983). Short-term forecasting: An introduction to the Box-Jenkins approaches. Journal of The Opeartional Research Societies, 34(10), 1017—1018. https://doi.org/10.1057/jors.1983.222
Chinn, M. D., & Meese. R. A. (1995). Banking on curency forecasts: How predictable is change in money? Journal of International Economics, 38(1—2), 161-178. https://doi.org/10.1016/0022-1996(94)01334-O
Dinh, D. V. (2020). Forecasting domestic credit growth based on ARIMA model: Evidence for Vietnam and Chine. Management Science Letters, 10(5), 1001—1010. https://doi.org/10.5267/j.msl.2019.11.010
Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in USA using Box-Jenkins methodology. International Journal of Economics and Financial Issues, 8(1), 9—20.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimation of the variance of United Kingdom inflation. Journal Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773
Gonen, T. (1984). Load forecasting using Box-Jenkins methodology. COMPEL-The International Journal of Computation and Mathematics Engineering, 3(1), 35—46. https://doi.org/10.1108/eb009986
Jere, S., & Moyo, E. (2016). Modelling epidemological data using Box-Jenkins procedure. Open Journal of Statistics, 6(2), 295-302. https://doi.org/10.4236/ojs.2016.62025
Khan, S., & Alghulaiakh, H. (2020). ARIMA model for accurate time series stocks forecasting. International Journal Advanced Computer Science and Applications, 11(7), 524—528. www.ijacsa.thesai.org
Moffat, U., & David, A. E. (2016). Modeling inflation rates in Nigeria: Box-Jenkins’ approach. International Journal of Mathematics and Statistics Studies, 4(2), 20-27. www.eajournals.org
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Wiley-Intercience
Nacer, W. A. W. (2019). Using the Box-Jenkins method to forecast sesame exports in Sudan during the period 1990—2028. Management & Economics Research Journal, 1(4), 208-217. https://doi.org/10.48100/merj.v1i4.70
Nigam, B., & Shukla, A. C. (2021). Sales forecasting using Box-Jenkins method based ARIMA model considering effect of COVID-19 pandemic situation. International Journal of Engineering Applied Sciences and Technology, 6(7), 87-97. www.ijeast.com
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its aplication with R examples. Springer Texts in Statistic
Tanong, K., Jatuporn, C., Suvianvihok, V., Seerasarn, N. (2021). Forecasting import demand for soybean meal in Thailand using Box-Jenkins method. Journal of Hunan University Natural Sciences, 48(5), 58—65. http://jonuns.com/index.php/journal/article/view/575
Wang, C. –N., Tran, K. –M., Yang, F. –C., Dang, T. –T., & Ngoc, H. (2022). Forecasting and measuring financial performance in banking sector. Computer Systems Science and Engineering. https://doi.org/10.32604/csse.2023.032016
Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods. Pearson.
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Irmatul Hasanah

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









