Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin

Penulis

  • Irmatul Hasanah UIN Sultan Maulana Hasanuddin Banten

DOI:

https://doi.org/10.32678/bs.v8i2.8246

Kata Kunci:

Box-Jenkins, forcasting, ROA, ROE

Abstrak

Kepercayaan masyarakat terhadap bank dapat dipengaruhi oleh kinerja suatu bank yang dapat dilihat dari tingkat profitabilitasnya. Terjadinya penurunan kinerja suatu bank akan menyebabkan menurunnya tingkat profitabilitas suatu bank. Sehingga apabila terjadi penurunan tingkat profitabilitas akan menyebabkan penurunan kepercayaan masyarakat terhadap bank. Penelitian ini bertujuan untuk meramalkan data kinerja keuangan Bank Syariah Bukopin menggunakan metode ARIMA Box-Jenkins. Data yang digunakan untuk penelitian ini adalah data rasio triwulan profitabilitas ROA dan ROE tahun 2010-2020. Hasil penelitian ini menunjukkan bahwa model ARIMA (1,1,0) dapat digunakan untuk melakukan peramalan data ROA.

Unduhan

Data unduhan belum tersedia.

Referensi

Agustin, I. N. (2019). The approach of box-jenkins time series analysis for predicting stock price in LQ45 stock index. PROFIT: Jurnal Administrasi Bisnis, 13(1), 18—25. https://doi.org/10.21776/ub.profit.2019.013.01.2

Anderson, O. D. (1995). More effective time-series analysis and forecasting. Journal of Computational and Applied Mathematics, 64(1-2), 117—147. https://doi.org/10.1016/0377-0427(95)00011-9

Beaumont, C. (1983). Short-term forecasting: An introduction to the Box-Jenkins approaches. Journal of The Opeartional Research Societies, 34(10), 1017—1018. https://doi.org/10.1057/jors.1983.222

Chinn, M. D., & Meese. R. A. (1995). Banking on curency forecasts: How predictable is change in money? Journal of International Economics, 38(1—2), 161-178. https://doi.org/10.1016/0022-1996(94)01334-O

Dinh, D. V. (2020). Forecasting domestic credit growth based on ARIMA model: Evidence for Vietnam and Chine. Management Science Letters, 10(5), 1001—1010. https://doi.org/10.5267/j.msl.2019.11.010

Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in USA using Box-Jenkins methodology. International Journal of Economics and Financial Issues, 8(1), 9—20.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimation of the variance of United Kingdom inflation. Journal Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773

Gonen, T. (1984). Load forecasting using Box-Jenkins methodology. COMPEL-The International Journal of Computation and Mathematics Engineering, 3(1), 35—46. https://doi.org/10.1108/eb009986

Jere, S., & Moyo, E. (2016). Modelling epidemological data using Box-Jenkins procedure. Open Journal of Statistics, 6(2), 295-302. https://doi.org/10.4236/ojs.2016.62025

Khan, S., & Alghulaiakh, H. (2020). ARIMA model for accurate time series stocks forecasting. International Journal Advanced Computer Science and Applications, 11(7), 524—528. www.ijacsa.thesai.org

Moffat, U., & David, A. E. (2016). Modeling inflation rates in Nigeria: Box-Jenkins’ approach. International Journal of Mathematics and Statistics Studies, 4(2), 20-27. www.eajournals.org

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Wiley-Intercience

Nacer, W. A. W. (2019). Using the Box-Jenkins method to forecast sesame exports in Sudan during the period 1990—2028. Management & Economics Research Journal, 1(4), 208-217. https://doi.org/10.48100/merj.v1i4.70

Nigam, B., & Shukla, A. C. (2021). Sales forecasting using Box-Jenkins method based ARIMA model considering effect of COVID-19 pandemic situation. International Journal of Engineering Applied Sciences and Technology, 6(7), 87-97. www.ijeast.com

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its aplication with R examples. Springer Texts in Statistic

Tanong, K., Jatuporn, C., Suvianvihok, V., Seerasarn, N. (2021). Forecasting import demand for soybean meal in Thailand using Box-Jenkins method. Journal of Hunan University Natural Sciences, 48(5), 58—65. http://jonuns.com/index.php/journal/article/view/575

Wang, C. –N., Tran, K. –M., Yang, F. –C., Dang, T. –T., & Ngoc, H. (2022). Forecasting and measuring financial performance in banking sector. Computer Systems Science and Engineering. https://doi.org/10.32604/csse.2023.032016

Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods. Pearson.

##submission.downloads##

Diterbitkan

2022-12-30

Cara Mengutip

Hasanah, I. (2022). Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin. Banque Syar’i: Jurnal Llmiah Perbankan Syariah, 8(2), 307–332. https://doi.org/10.32678/bs.v8i2.8246