Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin

Authors

  • Irmatul Hasanah UIN Sultan Maulana Hasanuddin Banten

DOI:

https://doi.org/10.32678/bs.v8i2.8246

Keywords:

Box-Jenkins, forcasting, ROA, ROE

Abstract

Public trust in banks can be influenced by the performance of a bank which can be seen from its profitability ratios. A decrease in the performance of a bank will lead to a decrease in the level of profitability of a bank. So that if there is a decrease in the level of profitability will cause a decrease in public trust in the bank. This study aims to predict the financial performance data of PT Bank Syariah Bukopin using the ARIMA Box-Jenkins method. The data used for this research is quarterly profitability ratio data for ROA and ROE for 2010-2020. This results shows that ARIMA(1,1,0) model can be used to find the value of ROA in th

Downloads

Download data is not yet available.

References

Agustin, I. N. (2019). The approach of box-jenkins time series analysis for predicting stock price in LQ45 stock index. PROFIT: Jurnal Administrasi Bisnis, 13(1), 18—25. https://doi.org/10.21776/ub.profit.2019.013.01.2

Anderson, O. D. (1995). More effective time-series analysis and forecasting. Journal of Computational and Applied Mathematics, 64(1-2), 117—147. https://doi.org/10.1016/0377-0427(95)00011-9

Beaumont, C. (1983). Short-term forecasting: An introduction to the Box-Jenkins approaches. Journal of The Opeartional Research Societies, 34(10), 1017—1018. https://doi.org/10.1057/jors.1983.222

Chinn, M. D., & Meese. R. A. (1995). Banking on curency forecasts: How predictable is change in money? Journal of International Economics, 38(1—2), 161-178. https://doi.org/10.1016/0022-1996(94)01334-O

Dinh, D. V. (2020). Forecasting domestic credit growth based on ARIMA model: Evidence for Vietnam and Chine. Management Science Letters, 10(5), 1001—1010. https://doi.org/10.5267/j.msl.2019.11.010

Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in USA using Box-Jenkins methodology. International Journal of Economics and Financial Issues, 8(1), 9—20.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimation of the variance of United Kingdom inflation. Journal Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773

Gonen, T. (1984). Load forecasting using Box-Jenkins methodology. COMPEL-The International Journal of Computation and Mathematics Engineering, 3(1), 35—46. https://doi.org/10.1108/eb009986

Jere, S., & Moyo, E. (2016). Modelling epidemological data using Box-Jenkins procedure. Open Journal of Statistics, 6(2), 295-302. https://doi.org/10.4236/ojs.2016.62025

Khan, S., & Alghulaiakh, H. (2020). ARIMA model for accurate time series stocks forecasting. International Journal Advanced Computer Science and Applications, 11(7), 524—528. www.ijacsa.thesai.org

Moffat, U., & David, A. E. (2016). Modeling inflation rates in Nigeria: Box-Jenkins’ approach. International Journal of Mathematics and Statistics Studies, 4(2), 20-27. www.eajournals.org

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Wiley-Intercience

Nacer, W. A. W. (2019). Using the Box-Jenkins method to forecast sesame exports in Sudan during the period 1990—2028. Management & Economics Research Journal, 1(4), 208-217. https://doi.org/10.48100/merj.v1i4.70

Nigam, B., & Shukla, A. C. (2021). Sales forecasting using Box-Jenkins method based ARIMA model considering effect of COVID-19 pandemic situation. International Journal of Engineering Applied Sciences and Technology, 6(7), 87-97. www.ijeast.com

Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its aplication with R examples. Springer Texts in Statistic

Tanong, K., Jatuporn, C., Suvianvihok, V., Seerasarn, N. (2021). Forecasting import demand for soybean meal in Thailand using Box-Jenkins method. Journal of Hunan University Natural Sciences, 48(5), 58—65. http://jonuns.com/index.php/journal/article/view/575

Wang, C. –N., Tran, K. –M., Yang, F. –C., Dang, T. –T., & Ngoc, H. (2022). Forecasting and measuring financial performance in banking sector. Computer Systems Science and Engineering. https://doi.org/10.32604/csse.2023.032016

Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods. Pearson.

Downloads

Published

2022-12-30

How to Cite

Hasanah, I. (2022). Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin. Banque Syar’i: Jurnal Llmiah Perbankan Syariah, 8(2), 307–332. https://doi.org/10.32678/bs.v8i2.8246