Peramalan Kinerja Keuangan PT Bank Syariah Bukopin Menggunakan Metode ARIMA Box-Jenkin
DOI:
https://doi.org/10.32678/bs.v8i2.8246Keywords:
Box-Jenkins, forcasting, ROA, ROEAbstract
Public trust in banks can be influenced by the performance of a bank which can be seen from its profitability ratios. A decrease in the performance of a bank will lead to a decrease in the level of profitability of a bank. So that if there is a decrease in the level of profitability will cause a decrease in public trust in the bank. This study aims to predict the financial performance data of PT Bank Syariah Bukopin using the ARIMA Box-Jenkins method. The data used for this research is quarterly profitability ratio data for ROA and ROE for 2010-2020. This results shows that ARIMA(1,1,0) model can be used to find the value of ROA in thDownloads
References
Agustin, I. N. (2019). The approach of box-jenkins time series analysis for predicting stock price in LQ45 stock index. PROFIT: Jurnal Administrasi Bisnis, 13(1), 18—25. https://doi.org/10.21776/ub.profit.2019.013.01.2
Anderson, O. D. (1995). More effective time-series analysis and forecasting. Journal of Computational and Applied Mathematics, 64(1-2), 117—147. https://doi.org/10.1016/0377-0427(95)00011-9
Beaumont, C. (1983). Short-term forecasting: An introduction to the Box-Jenkins approaches. Journal of The Opeartional Research Societies, 34(10), 1017—1018. https://doi.org/10.1057/jors.1983.222
Chinn, M. D., & Meese. R. A. (1995). Banking on curency forecasts: How predictable is change in money? Journal of International Economics, 38(1—2), 161-178. https://doi.org/10.1016/0022-1996(94)01334-O
Dinh, D. V. (2020). Forecasting domestic credit growth based on ARIMA model: Evidence for Vietnam and Chine. Management Science Letters, 10(5), 1001—1010. https://doi.org/10.5267/j.msl.2019.11.010
Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in USA using Box-Jenkins methodology. International Journal of Economics and Financial Issues, 8(1), 9—20.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimation of the variance of United Kingdom inflation. Journal Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773
Gonen, T. (1984). Load forecasting using Box-Jenkins methodology. COMPEL-The International Journal of Computation and Mathematics Engineering, 3(1), 35—46. https://doi.org/10.1108/eb009986
Jere, S., & Moyo, E. (2016). Modelling epidemological data using Box-Jenkins procedure. Open Journal of Statistics, 6(2), 295-302. https://doi.org/10.4236/ojs.2016.62025
Khan, S., & Alghulaiakh, H. (2020). ARIMA model for accurate time series stocks forecasting. International Journal Advanced Computer Science and Applications, 11(7), 524—528. www.ijacsa.thesai.org
Moffat, U., & David, A. E. (2016). Modeling inflation rates in Nigeria: Box-Jenkins’ approach. International Journal of Mathematics and Statistics Studies, 4(2), 20-27. www.eajournals.org
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to time series analysis and forecasting. Wiley-Intercience
Nacer, W. A. W. (2019). Using the Box-Jenkins method to forecast sesame exports in Sudan during the period 1990—2028. Management & Economics Research Journal, 1(4), 208-217. https://doi.org/10.48100/merj.v1i4.70
Nigam, B., & Shukla, A. C. (2021). Sales forecasting using Box-Jenkins method based ARIMA model considering effect of COVID-19 pandemic situation. International Journal of Engineering Applied Sciences and Technology, 6(7), 87-97. www.ijeast.com
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its aplication with R examples. Springer Texts in Statistic
Tanong, K., Jatuporn, C., Suvianvihok, V., Seerasarn, N. (2021). Forecasting import demand for soybean meal in Thailand using Box-Jenkins method. Journal of Hunan University Natural Sciences, 48(5), 58—65. http://jonuns.com/index.php/journal/article/view/575
Wang, C. –N., Tran, K. –M., Yang, F. –C., Dang, T. –T., & Ngoc, H. (2022). Forecasting and measuring financial performance in banking sector. Computer Systems Science and Engineering. https://doi.org/10.32604/csse.2023.032016
Wei, W. W. S. (2006). Time series analysis: Univariate and multivariate methods. Pearson.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Irmatul Hasanah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









