Karakteristik Fisik Substrat *Bacterial Cellulose* pada Sumber Nitrogen yang Berbeda

Physical characteristics of Bacterial Cellulose substrate at different nitrogen source

SITI ASSYIFA LIANY¹, ADELIA PUTRI¹, WILDA SYAFIRA¹, ANIS USWATUN KHASANAH¹*

¹ Laboratorium Mikrobiologi, Program Studi Biologi, Fakultas Sains, Universitas Islam Negeri Sultan Maulana Hasanuddin Banten. Jl. Syech Nawawi Al Bantani Kp. Andamu'i, Kel. Sukawana, Kec. Curug, Kota Serang 42171, Banten. Tel. (0254) 200 323. *Email: anis.uk@uinbanten.ac.id

Manuskrip diterima: [18 Mei 2022]. Manuskrip disetujui: [29 Juni 2022]

Abstrak. Bacterial cellulose (BC) merupakan polisakarida polimer yang dihasilkan oleh bakteri penghasil selulosa. BC dikenal oleh masyarakat dengan sebutan 'Nata'. Acetobacter xylinum merupakan salah satu bakteri penghasil selulosa dalam jumlah besar. Kebutuhan bakteri dalam membentuk selulosa membutuhkan unsur-unsur makro, seperti C, H, O, N, S, P, dan Se, yang berasal dari berbagai substrat, seperti air kelapa, air beras, dan tomat. Kebutuhan nitrogen dalam pembuatan BC secara komersial umumnya dipenuhi dengan penambahan ZA. Penggunaan ZA umum digunakan masyarakat karena harganya murah dan mudah diperoleh. Akan tetapi, apabila kadarnya melebihi 0,5% dari bahan total, dapat menimbulkan dampak negatif bagi kesehatan tubuh manusia. Oleh karena itu diperlukan alternatif sumber nitrogen lain seperti ekstrak kecambah. Penelitian ini bertujuan untuk mengetahui karakter fisik dengan perbedaan perlakuan sumber nitrogen dari ZA dan ekstrak kecambah pada berbagai variasi dan kombinasi substrat, diantaranya air kelapa, air beras, tomat, air kelapa-tomat, air kelapa-beras, dan air beras-tomat. Penelitian ini menggunakan metode eksperimen pada masing-masing substrat dan hasil yang diperoleh dianalisis secara deskriptif kualitatif. Formula pembuatan BC yaitu 50 mL substrat, 5 gram gula, 2 gram ZA, 2 gram ekstrak kecambah, 2 gram asam asetat glasial, dan 2 mL starter (A. xylinum). Hasil penelitian menunjukkan bahwa penggunaan ekstrak kecambah sebagai alternatif ZA cenderung efektif dalam pembentukan BC, ditunjukkan dengan ketebalan tertinggi 2,5 cm dan rendemen tertinggi 80%. Akan tetapi, kadar serat ZA lebih unggul, yaitu sebesar 3%, sedangkan kadar air pada kedua perlakuan berkisar 97-99%.

Kata kunci: Bacterial cellulose, kadar air, kadar serat, ketebalan, rendemen

Abstract. Bacterial cellulose (BC) is a bacterium that can produce cellulose. Synthetic products from BC are often referred to as 'Nata'. *Acetobacter xylinum* is a cellulose-producing bacteria that can produce a high amount of cellulose. For that, the medium requirement of *A. xylinum* must be fulfilled. Their needs include sources of carbon (C) derived from substrate content, such as coconut water, rice water, tomato, or the addition of synthetic sugar. In addition, acidic pH condition ranged between 4-5, and nitrogen sources were ZA (ammonium sulfate) and sprout extract. The ZA is commonly used, because it is cheap and easy to be obtained. However, if it exceeds 0.5% of the total material, it will give the negative influence to the health of body. For this reason, an alternative nitrogen source is needed in the form of sprout extract. The aim of this study was to determine the physical characteristics of different nitrogen sources from ZA and sprout extract on various variations and combinations of substrates, consisted of coconut water, rice water, tomato, coconut-tomato water, coconut-rice water and rice-tomato water. This study used an experimental method on each substrate and the results obtained were analyzed descriptively qualitatively. The formula for producing BC

consisted of 50 mL of substrate, 5 grams of sugar, 2 grams of ZA, 2 grams of sprout extract, 2 grams of glacial acetic acid and 2 mL of starter (*A. xylinum*). The results obtained in this study showed that the treatment of sprout extract as a nitrogen source offset the quality of ZA in terms of physical characteristics, such as thickness, yield and water content. However, for fiber content, the use of ZA was considered to be better than the sprout extract, but the BC texture resulted was harder than the use of sprout extract.

Keywords: Bacterial cellulose, fiber, moisture, thickness, yield

PENDAHULUAN

Bacterial Cellulose (BC), atau di bidang pangan biasa dikenal dengan sebutan 'Nata', merupakan senyawa organik polisakarida yang dihasilkan oleh jenis bakteri tertentu. Umumnya, bakteri tersebut secara alami dapat mensintetis polisakarida ekstraseluler, seperti selulosa. Selulosa tidak hanya berasal dari tumbuhan. akan tetapi beberapa mikroorganisme, seperti fungi, bakteri, dan alga, juga dapat mensintetis selulosa. Pertama kali selulosa dari bakteri jenis Acetobacter xylinum ditemukan oleh Brown pada tahun 1886. Pada berbagai penelitian disebutkan bahwa jenis bakteri lain yang dapat menghasilkan selulosa diantaranya dari kelompok bakteri gram-negatif, seperti Acetobacter, Rhizobium, Agrobacterium, Pseudomonas, Salmonella, dan Alcaligenes, sedangkan dari kelompok gram-positif misalnya Sarcina ventriculi. Adapun jenis bakteri yang paling efektif memproduksi dalam selulosa yaitu *A. xylinum* (Wang *et al.*, 2019).

Bakteri Α. xylinum dapat memproduksi selulosa secara optimal apabila kebutuhan dalam medium terpenuhi. Adapun kebutuhan diperlukan, seperti karbon (C), terkandung dalam substrat atau apabila substratnya tidak mengandung cukup

gula, dapat ditambahkan gula. Selain itu, kondisi pH asam berkisar antara 4-5, dan sumber nitrogen dapat diperoleh secara alami, misalnya dari ekstrak kecambah, atau buatan, seperti ZA atau amonium sulfat. Adapun sumber nitrogen yang umum digunakan adalah ZA.

Menurut Priyantini *et al.*, (2017), penggunaan ZA dalam produk, khususnya di bidang pangan, dinilai tidak berbahaya apabila menggunakan ZA *food grade* dengan ambang batas maksimum 0,5% dari seluruh bahan. Namun, masyarakat seringkali tidak memperhatikan batas aman tersebut. Hal ini dapat dilihat dari hasil penelitian Kholifah (2010) yang menunjukkan bahwa *Nata de Coco* mentah yang beredar di pasaran mengandung Pb, Cu, dan Zn.

Melalui Peraturan Kepala Badan Pengawas Obat dan Makanan (BPOM) Republik Indonesia Nomor 7 Tahun 2015 diatur tentang penggunaan ZA dalam produk makanan sebagai bahan penolong dalam proses pembuatan Nata. Namun, sebagian besar masyarakat belum menerapkan peraturan tersebut sehingga masih banyak industri skala kecil yang masih melanggar peraturan tersebut (Hamad dan Kristiono, 2013). Adapun penggunaan sumber nitrogen berupa ZA masih sering digunakan masyarakat karena harganya yang relatif terjangkau dan mudah diperoleh. Oleh karena itu, diperlukan alternatif lain yang terjangkau, mudah diperoleh, aman, dan layak untuk dikonsumsi.

Alternatif sumber nitrogen lain yang kaya akan nitrogen diantaranya dapat pada kecambah. ditemukan Adapun penggunaan kecambah sebagai salah satu bahan alternatif sudah banyak diteliti dan diuji coba, misalnya pada penelitian Hastuti et al., (2017) serta Hendrarti dan Nasarani (2020) yang menunjukkan bahwa kecambah berpengaruh penggunaan terhadap karakter fisik dari pembuatan Nata de Lerry (Nata yang substratnya terbuat dari air rendaman beras) dan Nata De Whey (Nata dari limbah susu). Namun, penggunaan sumber nitrogen ZA dan ektrak kecambah belum pernah dilakukan pada medium yang bersubstrat air kelapa, tomat, beras, air kelapa-tomat, air kelapaberas, dan air beras-tomat. Oleh karena itu, penelitian ini bertujuan untuk mengetahui perbedaan karakteristik fisik berdasarkan sumber nitrogen dengan perlakuan ZA dan ekstrak kecambah pada berbagai variasi dan kombinasi substrat BC.

METODOLOGI PENELITIAN

Material penelitian

Alat yang dibutuhkan dalam penelitian ini berupa autoklaf (Faithmul), mikropipet, microtube, hot plate stirer (Faithful), timbangan analitik (Faithful), botol kaca, seperangkat alat gelas kimia, spatula, karet gelang, alumunium foil, bunsen, spiritus, dan spatula. Adapun bahan yang dibutuhkan meliputi berbagai jenis substrat (air kelapa tua, tomat, air

rendaman beras), ZA, ekstrak kecambah, gula, *starter A. xylinum* komersial, dan asam asetat glasial.

Lokasi Penelitian

Penelitian dilakukan di Laboratorium Mikrobiologi, Program Studi Biologi, Fakultas Sains UIN Sultan Maulana Hasanuddin Banten.

Prosedur Penelitian

Pembuatan Bacterial Cellulose (BC)

Alat-alat yang digunakan dalam pembuatan BC disterilisasi terlebih dahulu. Setelah itu, pembuatan medium dengan merebus dilakukan substrat sebanyak 50 mL, kemudian dicampur dengan 5 gram gula, 2 gram sumber nitrogen (ZA atau ekstrak kecambah), 2 mL asam asetat glasial hingga mendidih, lalu dituang ke dalam botol kaca dan ditutup dengan alumunium foil dan karet. Setelah dingin, ditambahkan starter (A. xylinum) sebanyak 2 mL dan diinkubasi hingga proses fermentasi selesai (7-14 hari). Selanjutnya, proses pemanenan BC dilakukan dengan cara mencuci dan merebus BC hingga mendidih untuk membersihkan sisa-sisa metabolisme A. xylinum.

Uji Karakteristik Fisik

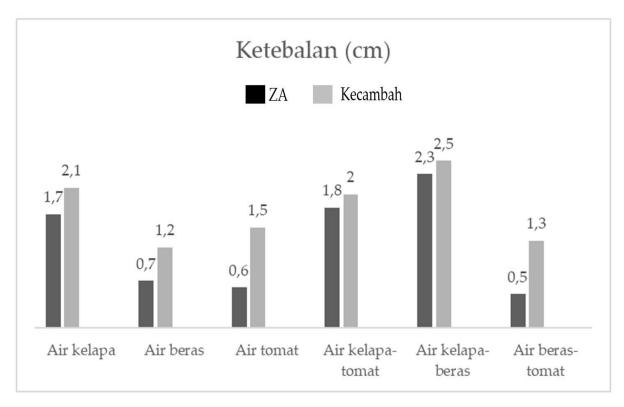
Karakteristik fisik BC dapat ditentukan berdasarkan ketebalan BC yang dihitung dengan menggunakan mistar, berat total BC, rendemen yang dihitung persentasenya berdasarkan berat total yang dihasilkan dibagi dengan total volume medium awal, serta kadar serat dengan terlebih dahulu dihitung kadar airnya dengan metode pengeringan oven.

 $\textit{Kadar air} = \frac{\textit{Berat sampel basah} - \textit{berat sampel kering}}{\textit{Berat media awal}} \times 100\%$ Kadar selulosa = 100% - Kadar air $\textit{Rendemen} = \frac{\textit{Berat BC hasil fermentasi} - \textit{berat sampel kering}}{\textit{Kadar sampel kering}} \times 100\%$

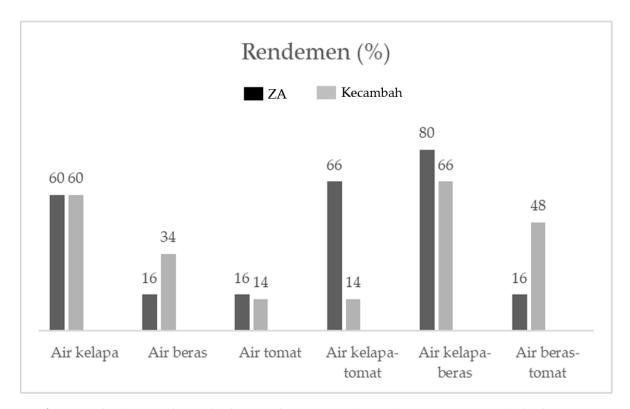
Analisis Data

Pada digunakan penelitian ini metode eksperimen pada berbagai substrat, lalu dilihat perbedaan karakter fisik, meliputi ketebalan, berat total, rendemen, dan kadar serat dari kedua perlakuan sumber nitrogen berupa ZA dan ekstrak kecambah. Selanjutnya, data dari hasil pengujian tersebut dianalisis secara deskriptif kualitatif.

Prosedur penelitian ini diawali dengan pembuatan BC dan pemanenan BC. Selanjutnya, uji karakteristik fisik uji fisik (ketebalan, berat total, rendemen, kadar serat) dilakukan di Laboratorium Mikrobiologi, Program Studi Biologi, Fakultas Sains, UIN Sultan Maulana Hasanuddin Banten.

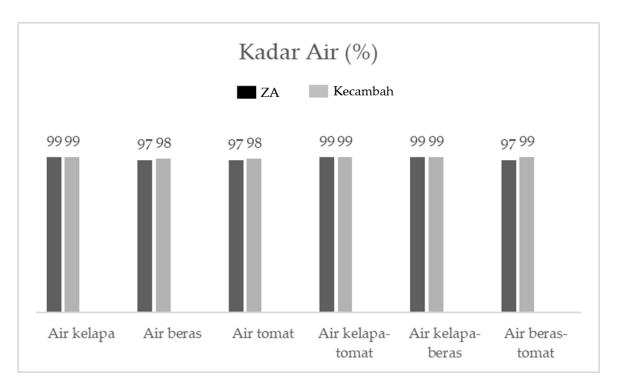

HASIL DAN PEMBAHASAN

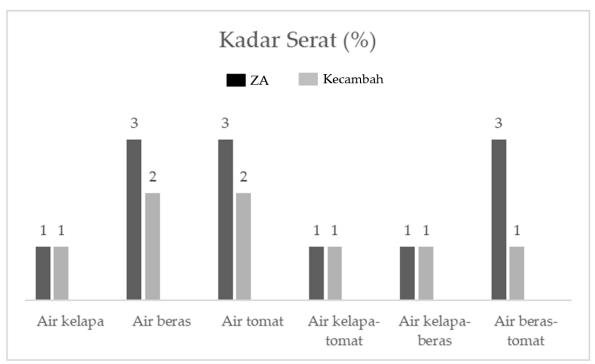
Ketebalan BC


Ketebalan BC dapat diperoleh dari hasil fermentasi bakteri A. xylinum dengan lama fermentasi antara 7-14 hari. Semakin lama waktu fermentasi, semakin besar ketebalan BC yang dihasilkan. Berdasarkan penelitian, didapatkan hasil hasil pengukuran pada penggunaan ekstrak kecambah, hasil diperoleh yang menunjukkan lapisan BC lebih tebal dibanding menggunakan ZA. Ketebalan Nata dengan perlakuan sumber nitrogen kecambah berkisar 1,2-2,5 cm, lebih tinggi dibandingkan dengan ketebalan Nata dengan menggunakan sumber nitrogen ZA, yaitu berkisar 0,5-2,3 cm (Gambar 1). Hal ini sesuai dengan hasil penelitian Fifendy et al., (2011) mengenai penggunaan ekstrak kecambah sebagai sumber nitrogen yang terbukti mampu meningkatkan kualitas BC yang lebih baik dibanding penggunaan ZA, baik dari segi ketebalan, kekenyalan, dan kadar serat. Hal ini juga sejalan dengan hasil penelitian Priyantini et al. (2017) bahwa pengolahan BC dengan menggunakan sumber nitrogen dari ekstrak kecambah berpengaruh terhadap pembentukan selulosa dan ketebalan Nata.

Rendemen

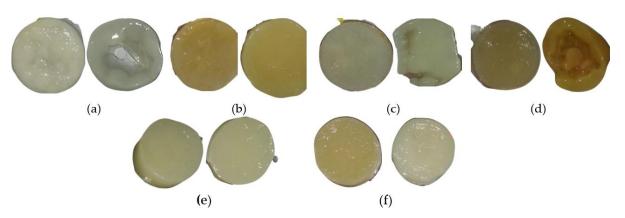
Analisis rendemen BC pada dimaksudkan untuk mengetahui efisiensi penggunaan masing-masing substrat pada fermentasi. Efisiensi saat proses penggunaan substrat dapat dilihat dari nilai rendemen. Semakin tinggi nilai rendemen, semakin tinggi efisiensinya (Hastuti et al., 2017). Berdasarkan hasil penelitian (Gambar 2), rendemen pada perlakuan ZA berkisar 16-66%, sedangkan ekstrak kecambah, pada perlakuan rendeman berkisar 14-80%. Pada rendemen substrat air beras-tomat, air kelapa-beras, diperoleh air beras, persentase rendemen ekstrak kecambah yang lebih besar dibanding perlakuan ZA, sedangkan pada substrat air tomat dan air kelapatomat diperoleh persentase rendemen yang lebih besar dibanding penggunaan ZA. Adapun pada substrat air kelapa, persentase rendeman antara ZA ekstrak kecambah sama besar. Dengan demikian, efisiensi terbesar dalam proses fermentasi sebesar 80% yang diperoleh dari perlakuan substrat air kelapa-beras dengan perlakuan ekstrak kecambah.


Gambar 1. Perbedaan ketebalan berbagai substrat BC pada sumber nitrogen yang berbeda


Gambar 2. Perbedaan rendemen berbagai substrat BC pada sumber nitrogen yang berbeda

Kadar Serat

Dalam penentuan kadar serat BC, ditentukan kadar air BC terlebih dahulu. Penentuan kadar serat secara sederhana dilakukan dengan menggunakan persamaan dari selisih 100% dikurangi dengan kadar air. Persamaan tersebut diperoleh dari hasil penelitian Naomi et al. (2020) yang menyatakan bahwa tingkat kemurnian dari BC cukup tinggi, artinya BC tersebut tidak mengandung hemiselulosa dan lignin yang biasanya terdapat pada sumber selulosa tumbuhan (Plant Cellulose), sehingga selain kadar air, komposisi BC merupakan serat. Hasil penelitian menunjukkan bahwa dari kedua perlakuan diperoleh kadar air berkisar 97-99% (Gambar 3), sedangkan kadar serat tertinggi sekitar 3% yang berasal dari perlakuan ZA dengan substrat air beras, air tomat, dan air beras-tomat. Adapun pada subtrat lain, seperti air kelapa, air kelapatomat, dan air kelapa-beras, kadar seratnya sebesar 1%, baik pada perlakuan ZA maupun ekstrak kecambah (Gambar 4). Kandungan kadar air pada BC terhadap berpengaruh tekstur yang dihasilkan. Menurut Hastuti et al. (2017), tingginya kadar air suatu BC menunjukkan bahwa BC tersebut tidak alot, sebaliknya, sehingga tekstur yang lembut dan tidak alot pada BC diperoleh dari perlakuan ekstrak kecambah, karena kadar airnya lebih tinggi dibandingkan dengan perlakuan ZA.


Gambar 3. Perbedaan kadar air pada berbagai substrat BC dengan sumber nitrogen yang berbeda

Gambar 4. Perbedaan kadar serat pada berbagai substrat BC dengan sumber nitrogen yang berbeda

Tabel 1. Hasil uji karakteristik fisik BC dari berbagai variasi dan kombinasi substrat

Substrat	Uji Karakteristik Fisik							
	Ketebalan (cm)		Rendemen (%)		Kadar Serat (%)		Kadar Air (%)	
	ZA	Kecambah	ZA	Kecambah	ZA	Kecambah	ZA	Kecambah
Air kelapa	1,7	2,1	60	60	1	1	99	99
Air beras	0,7	1,2	16	34	3	2	97	98
Air tomat	0,6	1,5	16	14	3	2	97	98
Air kelapa-tomat	1,8	2,0	66	14	1	1	99	99
Air kelapa-beras	2,3	2,5	80	66	1	1	99	99
Air beras-tomat	0,5	1,3	16	48	3	1	97	99

Gambar 5. Sampel BC dengan perlakuan sumber nitrogen ZA (kiri) dan perlakuan sumber nitrogen ekstrak kecambah (kanan) dari berbagai substrat: (a) air beras, (b) air kelapa-tomat, (c) air beras-tomat, (d) tomat, (e) air kelapa-air beras, dan (f) air kelapa

SIMPULAN

Hasil penelitian menunjukkan bahwa penggunaan ekstrak kecambah sebagai alternatif ZA mengimbangi bahkan cenderung efektif dalam pembentukan BC, ditunjukkan dengan hasil uji fisik berupa ketebalan, rendemen, kadar serat, dan air. Pada uji fisik BC dari dua perlakuan sumber nitrogen berupa ZA dan ekstrak kecambah, diketahui hasil terbaik pada kedua sumber nitrogen adalah ekstrak kecambah unggul dalam ketebalan (2,5 cm) dan rendemen (80%), sedangkan ZA unggul dalam kadar serat (3%). Adapun kadar air pada kedua perlakuan berkisar 97-99%.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Program Studi Biologi, Fakultas Sains UIN Sultan Maulana Hasanuddin yang telah menyediakan peralatan dan tempat berupa laboratorium untuk pelaksanaan penelitian.

DAFTAR PUSTAKA

- Fifendy, M., Putri, D.H., Maria, S.S. (2011). Pengaruh penambahan touge sebagai sumber nitrogen terhadap mutu *Nata de Kakao. Jurnal Sains dan Teknologi* 3(2): 165–170.
- Hamad, A., Kristiono, K. (2013). Pengaruh penambahan sumber nitrogen terhadap hasil fermentasi *Nata de Coco*. *Momentum* 9(1): 62–65.
- Hastuti, M., Andriyani, M., Wiedyastanto, A., Gisyamadia, D.S., Margono. (2017).

- Pemanfaatan ekstrak kecambah kacang hijau sebagai sumber nitrogen alternatif dalam pembuatan *Nata de Lerry. Prosiding Seminar Nasional Sains dan Teknologi ke-8.* Semarang: Fakultas Teknik Wahid Hasyim.
- Hendrarti, E.N., Nasarani, R.A.A. (2020). Ekstrak kecambah kacang hijau sebagai pengganti amonium sulfat (ZA) dalam pembuatan *Nata de Whey*. *Polbatanyoma* 2(3): 116–112.
- Kholifah, S. (2010). Pengaruh penambahan ZA dan gula terhadap karakteristik fisik, organoleptik dan kandungan logam nata de coco. [Skripsi]. Bogor: Institut Pertanian Bogor.
- Naomi, R., Idrus, R.B.H., Fauzi, M.B. (2020). Plant-vs. bacterial-derived cellulose for wound healing: A review. *Int J Environ Res Public Health* 17(18): 1–25. https://doi.org/10.3390/ijerph17186803
- Priyantini, W., Mustikaningtyas, D.,
 Priyono, B. (2017). Evaluasi sifat fisik

 Nata de Coco dengan ekstrak

 kecambah sebagai sumber nitrogen.

 Seminar Nasional Sains dan Teknologi.

 Semarang: Universitas

 Muhammadiyah Semarang.
- Putranto, K., Taofik, A. (2017). Penambahan ekstrak toge pada media Nata de Coco. Jurnal Kajian Islam, Sains, dan Teknologi 10(2): 138–149.
- Wang, J., Tavakoli, J., Tang, Y. (2019).

 Bacterial cellulose production, properties and applications with different culture methods A review.

 Carbohydrate Polymers 219: 63–76. https://doi.org/10.1016/j.carbpol.2019.0 5.00